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Questions ∼answered in paper
Nonlinear models cause sampling error.

Why and how?
Can it be dissociated from non-Gaussianity?

Does the inherent bias
(

E[tr(P̄a)] < tr(Pa)
)

cause
collapse ?
divergence ?

Other reasons for inflating in nonlinear contexts.

Linear models attenuate sampling error. How?

Is the covariance factor 1
N−1 optimal?

How does localization affect inflation ?

How should inflation be defined as a parameter,
rather than just a target statistic?

How does the feedback of the EnKF-N compare to “unbiased” updates.

What is the bias of the estimator β̂R ? Why is it better than β̂I or β̂ML ?
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Revisiting the EnKF assumptions
=⇒ Gaussian scale mixture (EnKF-N)

With model error
Survey inflation estimation

ETKF-adaptive
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EnKF-N hybrid
Benchmarks
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Idealistic contexts (EnKF-N)
Assume M,H,Q,R are perfectly known,
and p(x) and p(y|x) are always Gaussian.



EnKF



Revisiting EnKF assumptions

Denote yprior all prior information on the “true” state, x ∈ RM ,
and suppose that, with known mean (b) and cov (B),

p(x|yprior) = N (x|b,B) . (1)

Computational costs induce:

≈ p(x|E) =
∫∫
N (x|b,B) p(b,B|E) db dB

=⇒ “true” moments, b and B, are unknowns,
to be estimated from E.

Ensemble E =
[
x1, . . . xn, . . . xN

]
also from (1) and iid.
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EnKF prior

But

p(x|E) =
∫
B

∫
RM

N (x|b,B) p(b,B|E) db dB (2)

Recover standard EnKF by assuming N=∞ so that

p(b,B|E) = δ(b− x̄)δ(B− B̄) ,

where

x̄ = 1
N

N∑
n=1

xn , B̄ = 1
N − 1

N∑
n=1

(xn − x̄) (xn − x̄)T . (3)

The EnKF-N does not make this approximation.



EnKF prior

But

p(x|E) =
∫
B

∫
RM

N (x|b,B) p(b,B|E) db dB (2)

Recover standard EnKF by assuming N=∞ so that

p(b,B|E) = δ(b− x̄)δ(B− B̄) ,

where

x̄ = 1
N

N∑
n=1

xn , B̄ = 1
N − 1

N∑
n=1

(xn − x̄) (xn − x̄)T . (3)

The EnKF-N does not make this approximation.



EnKF prior

But

p(x|E) =
∫
B

∫
RM

N (x|b,B) p(b,B|E) db dB (2)

Recover standard EnKF by assuming N=∞ so that

p(b,B|E) = δ(b− x̄)δ(B− B̄) ,

where

x̄ = 1
N

N∑
n=1

xn , B̄ = 1
N − 1

N∑
n=1

(xn − x̄) (xn − x̄)T . (3)

The EnKF-N does not make this approximation.



EnKF-N via scale mixture

Prior: p(x|E) =
∫∫
N (x|b,B) p(b,B|E) db dB (4)

...

...∝
∫
α>0

N
(
‖x− x̄‖εN B̄|0, α

)
p
(
α|E

)
dα

(5)

...

...∝ N
(
x|x̄, α(x)B̄

)
p̃
(
α(x)|E

)

(6)

...

∝
(
1 + 1

N−1‖x− x̄‖
2
εN B̄

)−N/2
(7)

Posterior: p(x|E,y) ∝ p(x|E) N
(
y|Hx,R

)

(8)
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Mixing distributions – p(α| . . .)
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Prior: p(α|E) = χ−2(α|1, N−1)

Likelihood: p(x?,y|α,E) ∝ exp
(
−1

2‖y−Hx̄‖2αεN HB̄HT+R
)

=⇒ Posterior: p(x?, α|y,E) ∝ exp
(
−1

2 D(α)
)



Summary – Perfect model scenario

Even with a perfect model, Gaussian forecasts, and a
deterministic EnKF, “sampling error” arises for N <∞ due to
nonlinearity, and inflation is necessary.

Not assuming B̄ = B as in the EnKF leads to a Gaussian
scale mixture.

This leads to an adaptive inflation scheme, nullifying the need
to tune the inflation factor, and yielding very strong
benchmarks in idealistic settings.

Excellent training for EnKF theory.
Especially general-purpose inflation estimation.
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With model error
Because all models are wrong.



Fundamentals

Suppose xn ∼ N
(
b,B/β

)
, and N =∞.

Then there’s no mixture, but simply

p(x|β, ) = N
(
x
∣∣x̄, βB̄

)
. (9)

Recall
p(y|x) = N

(
y|Hx,R

)
.

Then

p(y|β) = N
(
y
∣∣Hx̄, C̄(β)

)

= N
(
δ̄
∣∣0, C̄(β)

)

,

where C̄(β) = βHB̄HT + R ,

δ̄ = y −Hx̄ .

(10)
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ETKF adaptive inflation

Again,
p(y|β) = N

(
δ̄
∣∣0, C̄(β)

)
, (11)

where C̄(β) = βHB̄HT + R ≈ δ̄δ̄T . (12)

“yielding” (Wang and Bishop, 2003)

β̂R = ‖δ̄‖
2
R/P − 1
σ̄2 ,

where P = length(y) and σ̄2 = tr(HB̄HTR−1)/P .

Also considered: β̂I, β̂HB̄HT , β̂C̄(1), ML, VB (EM).
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Renouncing Gaussianity
Assume HB̄HT ∝ R.
The likelihood p(y|β) = N

(
δ̄
∣∣0, C̄(β)

)
becomes:

p(y|β) ∝ χ+2
(
‖δ̄‖2R/P

∣∣∣ (1 + σ̄2β), P
)
. (13)

Surprise !!!: argmax p(y|β) = β̂R ,

A further approximation is fitted:
p(y|β) ≈ χ+2(β̂R|β, ν̂) . (14)

Likelihood (14) fits mode of (13). Fitting curvature =⇒ ν̂

=⇒ same variance as in Miyoshi (2011) !!!
Likelihood (14) conjugate to p(β) = χ−2(β|βf, νf) , yielding

νa = νf + ν̂ , (15)

βa = (νfβf + ν̂β̂R)/νa , (16)

again, as in Miyoshi (2011).
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EAKF adaptive inflation

Anderson (2007) assigns Gaussian prior:
p(β) = N (β|βf, V f) , (17)

and fits the posterior by a “Gaussian”:
p(β|yi) ≈ N (β|β̂MAP, V

a) , (18)

where β̂MAP and V a are fitted using the exact posterior
(“easy” by virtue of serial update).

Gharamti (2017) improves via χ−2 and χ+2 (Gamma).



EAKF adaptive inflation

Anderson (2007) assigns Gaussian prior:
p(β) = N (β|βf, V f) , (17)

and fits the posterior by a “Gaussian”:
p(β|yi) ≈ N (β|β̂MAP, V

a) , (18)

where β̂MAP and V a are fitted using the exact posterior
(“easy” by virtue of serial update).

Gharamti (2017) improves via χ−2 and χ+2 (Gamma).



EAKF adaptive inflation

Anderson (2007) assigns Gaussian prior:
p(β) = N (β|βf, V f) , (17)

and fits the posterior by a “Gaussian”:
p(β|yi) ≈ N (β|β̂MAP, V

a) , (18)

where β̂MAP and V a are fitted using the exact posterior
(“easy” by virtue of serial update).

Gharamti (2017) improves via χ−2 and χ+2 (Gamma).



EAKF adaptive inflation

Anderson (2007) assigns Gaussian prior:
p(β) = N (β|βf, V f) , (17)

and fits the posterior by a “Gaussian”:
p(β|yi) ≈ N (β|β̂MAP, V

a) , (18)

where β̂MAP and V a are fitted using the exact posterior
(“easy” by virtue of serial update).

Gharamti (2017) improves via χ−2 and χ+2 (Gamma).



EAKF adaptive inflation

Anderson (2007) assigns Gaussian prior:
p(β) = N (β|βf, V f) , (17)

and fits the posterior by a “Gaussian”:
p(β|yi) ≈ N (β|β̂MAP, V

a) , (18)

where β̂MAP and V a are fitted using the exact posterior
(“easy” by virtue of serial update).

Gharamti (2017) improves via χ−2 and χ+2 (Gamma).



EnKF-N hybrid
Use two inflation factors: α and β,
dedicated to sampling and model error, respectively.
For β, pick simplest (and ∼best) scheme: β̂R.
Algorithm:

Find β (via β̂R)
Find α given β (via EnKF-N)

Potential improvements:
Determining (α, β) jointly (simultaneously).
Rather than fitting the likelihood parameters, fit posterior
parameters (similarly to EAKF).
Matching moments via quadrature
Non-parametric (grid- or MC- based)
De-biasing β̂R

Testing “improvements” did not yield significant gains.
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Two-layer Lorenz-96
Evolution

dxi
dt = ψ+

i (x) + F − hc
b

10∑
j=1

zj+10(i−1) , i = 1, . . . , 36,

dzj
dt = c

b
ψ−j (bz) + 0 + h

c

b
x1+(j−1)//10 , j = 1, . . . , 360,

where ψi is the single-layer Lorenz-96 dynamics.
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Illustration of time series
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Summary

Paper highlights:

Cataloguing of reasons to inflate.

Inflation-centric re-derivation of the dual EnKF-N .

Formal survey of adaptive inflation methods.

A simple hybrid of EnKF-N and β̂R, which is shown to
systematically (but moderately) improve filter accuracy (no
re-tuning!).
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Parametric distributions – Properties



EnKF-N mixing distribution

Instead, we assign the Jeffreys (hyper)prior:

p(b,B) ∝ p(B) ∝ |B|−(M+1)/2 , (19)

and recall the likelihood:

p(E|b,B) ∝
N∏
n=1
N (xn|b,B) , (20)

yielding

p(b,B|E) = N (b|x̄,B/N)︸ ︷︷ ︸
p(b|B,E)

W−1(B|B̄, N−1)︸ ︷︷ ︸
p(B|E)

, (21)

where W−1 is the inverse-Wishart distribution (c.f. Table 2).
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